Colloquium 2/27: Quinn Morris on “From Theory to Practice: Boundary Value Problems and Prokelesia Arginata”

As part the R.W. Yeagy Colloquium Series, Mr. Quinn Morris will be talking about “FROM THEORY TO  PRACTICE: BOUNDARY VALUE PROBLEMS AND PROKELISIA ARGINATA at 2:30 PM on Monday February 27th in Math 357.

Abstract: In a first course in ordinary differential equations, one often treats initial value problems and is able to show existence & uniqueness of solutions when f is “nice”. In this talk, we will instead consider boundary value problems, and observe that even for very “nice” functions f, existence and uniqueness is a much more complicated question. In the second half of the talk, we will discuss some boundary value problems arising from population models with density dependent dispersal on the boundary. The NSF-funded study of these models is on-going work with a group of undergraduates, graduate students, and faculty at three universities. (flyer in PDF form)

Colloquium 01/30: Dr. Kirsti Wash on My Experience with Student Research

As part of the R. W. Yeagy Colloquium Series, on January 30, 2017, at 3:10 pm in Math Building 357 (please note the time!), Dr. Kirsti Wash of Trinity College will be presenting two talks. The second of which is entitled My Experience with Student Research.

Abstract: Over the past four years, I have advised 7 undergraduate research students and 2 student senior theses. Although the mathematical background varied greatly among each student, I consider each project undertaken a success. In this talk, I will discuss my experience in advising undergraduate research. In particular, I will discuss the difficulties I have faced in judging a student’s research capabilities, in choosing appropriate problems, and in leading them through the writing process.

Colloquium 01/30: Dr. Kirsti Wash on The Packing Chromatic Number of Subdivisions of Subcubic Graphs

As part of the R. W. Yeagy Colloquium Series, on January 30, 2017, at 2:30 pm in Math Building 357 (please note the time!), Dr. Kirsti Wash of Trinity College will be presenting two talks. The first of which is entitled The Packing Chromatic Number of Subdivisions of Subcubic Graphs.

Abstract: The packing chromatic number \chi_\rho(G) of a graph G is the smallest integer k such that the vertex set of G can be partitioned into sets X_1, \ldots, X_k where X_i is an i-packing for each i\in\{1,2,\ldots,k\}. Gastineau and Togni recently conjectured that \chi_\rho(S(G))< 5 where S(G) is the subdivision of any subcubic graph. We show that the conjecture is indeed true for all generalized prisms of a cycle other than the Petersen graph. We also give a more general class of 2-connected subcubic graphs for which the conjecture holds and discuss the obstacles of proving the conjecture in general. This is joint work with Bostjan Bresar, Sandi Klavzar, and Douglas F. Rall.

Colloquium 12/1: Kate Kochalski on “Fluid Limit for a Batched Processor Sharing Queue”

Kate Kochalski of the University of Virginia will speak as part of the R. W. Yeagy Colloquium series on Friday, December 2 at 2pm in Math Building 357.

Abstract: We consider a sequence of single server queues operating under a service policy that incorporates batches into processor sharing. There are measure-valued processes that describe each system in the sequence. Motivated by the law of large numbers from classical probability, we find a fluid limit of these processes.  This is a limiting stochastic process that is easier to work with than the original stochastic processes.  We can then use this simpler limiting object to approximate what happens in the system. In particular, we show the model is completely described by its initial state and each new batch will start in a predictable, periodic way. (flyer in PDF form)

Colloquium 11/28: Brittany Falahola on “Characterizing Gorenstein Rings”

As part of the R.W. Yeagy Colloquium series, Brittany Falahola of the University of Nebraska at Lincoln will speak on Characterizing Gorenstein Rings at 12 pm (note the change from the usual time) on Monday, November 28.

Abstract: Within commutative algebra, my research focuses on a class of (local) rings called Gorenstein rings. To develop the notion of a Gorenstein ring, I will give several examples which highlight various useful characterizations of said rings, including the work I have done to characterize Gorenstein rings in the setting of prime characteristic rings. (flyer in PDF form)

Colloquium 10/24: Dr. Brandy Doleshal on “Dehn Surgery and Knots in the Genus 2 Surface”

On Monday, October 24, at 3:30 pm in Math Building 357, Dr. Brandy Doleshal will be talking about “Dehn Surgery and Knots in the Genus 2 Surface.”

Abstract: Low-dimensional topology is the study of 3- and 4-manifolds. A link is an embedding of some number of circles into a 3-manifold M. Each circle is called a component, and a link of one component is called a knot. Dehn surgery is a way of replacing a neighborhood of a component of knot or link to create a (possibly) new manifold. A classical result of Wallace and Lickorish tells us that any closed compact 3-manifold can be obtained by Dehn surgery on a link. Hence we can study 3-manifolds through studying knots and links. We will discuss some knots on the genus 2 surface and the Dehn surgeries they admit. (flyer in PDF form)

Colloquium 10/10: Dr. Robert Strader on “Computer Arithmetic”

On Monday October 10th, at 3:30 PM in Math Building 357 Dr. Robert Strader will be talking about “Computer Arithmetic.” This talk will be accessible to all levels of students and computer users.

 

Abstract: Modern computation requires fast and correct operation for applications.  The twin goals of performance and correctness are often at odds and require specialized algorithms and circuits for successful implementations.  Come join us for an overview of representational systems, algorithmic techniques, and circuit designs.  Representational methods include positional (place value system) notation in standard bases, redundant systems such as signed digit representation, and various specialized systems including irrational and logarithmic representations.  Specialized algorithms for fast addition, multiplication and division have been developed for algorithmic operation.  Extended internal systems can help to reduce errors.  Many of these systems have found encodings in circuit designs for fast operation and correct computation.   (flyer in PDF form)